
Journal of Statistical Physics, Vol. 42, Nos. 5/6, 1986 

Charged Rods in a Periodic Background: 
A Solvable Model 
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The one-component Coulomb system with logarithmic potential in a periodic 
background is considered. In one dimension, when the background has the 
same period as the average interparticle spacing, the system is exactly solvable 
for three values of the coupling constant. The exact solution exhibits insulating- 
conducting phase transitions. An heuristic argument is presented which predicts 
the phase diagram for this system. 

KEY WORDS: Kosterlitz-Thouless phase transition; exact solvability; one- 
component plasma. 

1. I N T R O D U C T I O N  

The two-species classical Coulomb system consisting of positive and 
negative charged rods is a model system for diverse physical phenomena. In 
one space dimension, with the constraint that the charged rods alternate in 
sign, the system models the Kondo effect. (j'2) In two dimensions the system 
was the model used by Kosterlitz and Thouless in their pioneering work on 
metastability and phase transitions in two dimensions. (3) 

The Coulomb system is prevented from collapsing by including a 
short-range repulsive potential, stronger than the logarithmic attraction of 
oppositely charged rods. At high temperatures the system is in a con- 
ducting phase--the charges are mobile and will perfectly screen an external 
charge density in the long wavelength limit. As the temperature is lowered 
dipole pairs form. When a certain (in general density dependent) critical 
temperature is reached, the system consists only of dipole pairs. The 
charges are no longer individually mobile and will not perfectly screen an 
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external charge density in the long-wavelength limit. The system is in a 
dielectric (insulating) phase. 

Despite the conducting-dielectric phase transition of the Coulomb gas 
having been extensively studied for over a decade now, some outstanding 
questions remain. Let us consider one such question. 

From both renormalization group arguments (4) and more recently a 
Monte Carlo simulation/5~ it is known that in the limit of zero particle den- 
sity the Coulomb gas undergoes a dielectric-conducting phase transition at 
F~q2/kBT=4 (q is the magnitude of the charge of the particles). Now 
consider a finite system of an equal number of positive and negative par- 
ticles contained within a disk of radius R. For F large enough the system 
consists of tightly bound dipoles. If a single dipole ionizes into two free 
charges--one positive and one negative--the cost in energy is 

AU~q21og R (1.1) 

while the gain in entropy due to an extra mobile charge is 

- A S ~  --kB log R 2 (1.2) 

R 2 being the order of the allowed volume available to the extra mobile 
charge. The change in free energy is thus 

A F -  A U -  TAS 

= (q2_ 2ksT) log R (1.3) 

This quantity is negative provided F < 2 .  Hence on the basis of this 
argument we would expect the dipoles to ionize at the temperature F =  2, 
in contradiction to the known result. 

What is wrong with the above argument? Correlations have been com- 
pletely ignored. It is therefore necessary to include the effects of 
correlations even in the zero density limit. This raises the question of 
providing a simple heuristic argument which includes correlations to predict 
the transition at F =  4. 

In this paper we do not provide such an argument in the two-dimen- 
sional domain. However, on the basis of some exact calculations in one 
dimension, we do show the essential role the correlation functions play in 
the conducting-insulating transition, and do provide such an argument for 
the solvable system. 

The system we will consider is the one-component Coulomb gas with 
logarithmic potential in a periodic background. The domain is a line and 
we impose periodic boundary conditions. The periodic background is 
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chosen to have the same period as the average particle spacing (1/#). It can 
have a completely arbitrary origin (i.e., it is not necessarily Coulombic). 

This system has the special property of being exactly solvable for three 
values of the coupling constant: F =  1, 2, and 4. This applies for all periodic 
potentials (period 1//~) with a Boltzmann factor that has a convergent 
Fourier series. The free energy and one- and two-particle correlations can 
all be calculated exactly. From the exact expressions for the two-particle 
correlations we show explicitly that the system is in a conducting state at 
F =  1 and insulating at F =  2 and 4, for general periodic backgrounds of 
period 1//~. However, if the periodic background is such that its first 
Fourier coefficient vanishes, then the system remains in a conducting phase 
at both F =  2 and 4. 

2. P R E L I M I N A R I E S  

2.1. De f in i t ion  of  the  M o d e l  

The pair potential for two unit charged rods interacting in periodic 
boundary conditions is 

~ ( 0 , 0 ' ) = - ~ l o g  2 1 - c o s ~ ( 0 - 0 ' )  (2.11 

where W is the length of the system. On the line of length W suppose there 
are N mobile charges. As well as the interparticle interaction (2.1) suppose 
each particle interacts with a periodic background, of period 1/# = WIN. 
Let the energy of interaction between the particle and background be U(O). 
If necessary, the system is made charge neutral by also imposing a uniform 
background charge density. Then for both Coulombic and non-Coulombic 
periodic backgrounds the Hamiltonian for the system is 

q21 H = - - ~ -  - 2 N l o g  ~ + N l o g N + 2  • logle2~i~176 
l ~ j < k < ~ N  

N 

+ Z U(Ok) (2.2t 
k = l  

Consider the one-body terms in H, due to the particle periodic 
background interaction. Since they are periodic of period 1/# we can write 
the Boltzmann factor 

f(O~) = e -pu(ok) (2.3) 
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as the Fourier series 

f(Ok) = ~ One 2~inuOk (2.4) 
n =  oo 

where 

f l / ~  

c n = c  n = #  e ~(X) cos2~#nxdx  
~0 

(2.5) 

Thus the Boltzmann factor is 

e-~S~ = exp [ - 4 N F  log(W/2=) + 2 F N  log N] 

N 

x I1 e2"i~176 I ]  f (Ok)  (2.6) 
l ~ j < k < ~ N  k ~ l  

where we will use the representation (2.4) of f(O). 
The free energy per particle and the one- and two-particle correlations 

in the finite system are thus, respectively, 

/~f = _ 1 log [ (2~z/W)NrNrN/2 (Io,u/U[) ] (2.7) 

p(01) = NIl,u/Io,u (2.8) 

p(O~, 02)= N ( N - -  1)I2,N/I0, u (2.9) 

where 

Ia, N =-- Ia, N(f, I ~, F) 

p 
t _ p ~  1 / h a + l =  --co ha+2 = --oo 

and 

N ; j  
" " " H c~ dO t e2"inI"D r 

nN= --o0 / = a + l  

(2.10) 

D =- D(O1, 0~,..., ON) = ~I  [ e2~i~ e2=i~ 
l ~ j < k < ~ N  

(2.11) 

We can evaluate I a , N ,  a = 0, 1, 2 for all f and/~ at the three values of the 
coupling constant F =  1, 2, and 4. But first we will review some elec- 
trostatics, and derive a sum rule which characterizes the phase (conducting 
or insulating) of the system. 
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2.2. Conducting and Insulating Phases of Coulomb Systems 
with the Logarithmic Potential in Strip Geometry 

From the static viewpoint, the characteristic feature of the conducting 
phase of a Coulomb system is perfect screening. The system will respond to 
an external charge density in the long-wavelength limit so as to exactly 
cancel that charge density. This feature is characteristic of the conducting 
phase irrespective of the geometry of the system. 

On the other hand, suppose we are in the two-dimensional bulk and in 
a dielectric phase. In the long-wavelength limit of an external charge den- 
sity, the system will respond to cancel only the fraction ( 1 -  l/e) of the 
external charge density. For the two-dimensional domain these features can 
be taken as definitions of each phase respectively. 

However, we want to consider the dielectric constant of a strip 
domain. Suppose we cut and place in a vacuum (dielectric constant unity) 
a strip-shaped slice of two-dimensional dielectric material. Let this material 
have dielectric constant e and suppose the strip is of width d and infinite in 
length with its bottom edge on the J( axis of the X-Y plane. The elec- 
trostatic potential ~b at the point (x, y) within the strip created by a unit 
charge at the point (x', y') also within the strip can be calculated using the 
method of images. We find 

~b(x,y)= 1 ~  ~, rl2J<+llog[(x_x,)2+(y+y,_Znd)2]l/2 
g {-n= -oo 

+ ~ rl21nllog[(x-x)2-k(y-y'-Znd)2] t/2} (2.12) 
n =  oo  

where 

1--g 
t / -  (2.13) 

l + e  

The large-wavelength behavior of (2.12) is given by the small-k behavior of 
the Fourier transform 

q~(k) = f-~oo ~b(x, y)eikXdx (2.14) 

we have 

~ & ~ ,?~,-~=! (2.15) 
~(k )k+~  ]kl . . . .  tkl 
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But this is the small-k behavior of a unit charge in a vacuum 

~(k)= O(x, s ) e ~ d x  

7~ 
Ik~ as k ~ O  (2.16) 

where 

O(x, y) = - �89 log(x 2 + y2) (2.17) 

Thus from the viewpoint of screening an external charge density in the 
long wavelength limit, the dielectric strip behaves as a vacuum. Since the 
line is just the zero strip width limit this remark applies also to a line of 
dielectric material. 

2.3. Sum Rules 

The above screening characteristics can be used to derive sum rules 
which specify the phase (conducting or insulating) in terms of an 
asymptotic property of the charge-charge correlation. This is done in a 
standard way using linear response theory. (6'7) 

Recall that if the Hamiltonian H of a system can be written 

H =  Ho + )~HI (2.18) 

where 2 is small, the linear response relation says that for any observable 
A, 

(A >a- ( A )o= )Lfi( (AH1) o -  {A )o{ H~)o) (2.19) 

Here ( .  > denotes the canonical average, and the subscript 0 indicates the 
average is taken when 2--0. We will take for H o the Hamiltonian (2.2). 

Suppose the perturbed Hamiltonian is due to an oscillating 
background density 

p~x,(x, y) = 2ef~ya(x) (2.20) 

where 6 denotes the Dirac delta function. This charge density creates a 
potential 

e*ky-I~*1 (2.21) ~ext(X, s )  = 
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which couples to the mobile particles so that 

�9 4H 1 = ~ f C ( y )  ~b(0,  y)  dy (2.22) 

where 
N 

C(y)=q ~,, 6 ( y -  y/) (2.23) 
/= 1 

is the microscopic charge density of the mobile particles. 
Let us take for the observable A the charge density (2.23), and con- 

sider the linear response relation (2.19) in the limit k ~ 0. In this limit the 
external charge density tends to the constant 2g(x), and the induced charge 
density will have the periodicity of the periodic background. From the 
characteristics of the conducting and insulating phases noted in the above 
section, the system will respond to exactly cancel the fraction (1 - 1/e') of 
this charge. Here e ' =  ~ for the conducting phase and e '=  1 for the 
insulating phase. Hence the average value of the induced charge density 
over one period of the background must equal - 2 ( I  - l / d ) ,  i.e., 

- 2 ( 1  - 1/~') = # dy ' [ (C(y ' ) ) : , - (C(y ' ) )o l  as k--+0 (2.24) 
~0 

But from (2.19)and (2.21)-(2.23), 

where 

T~ 
<c>~- <C>o =/E/~ f dy e**y c~(y, y') (2.25) 

C~(y, y')= (c(y) c(y '))-  (c(y)) (c(y')) 
= q216(y -- y') p(y) + ,o~(y, y ' ) ]  (2.26) 

p~ denoting the truncated two-particle distribution function. Substituting 
(2.25) in (2.24) we obtain the sum rule 

# dy' dy eikPC~(y + y', y ' )~ [kl (1 - ly)/Trfi as k ~ 0 (2.27) 
~0 --co 

From (2.26) and Fourier transform theory this is equivalent to saying that 
the large-y expansion of 

~ 1//~ 
# dy 'p[ (y+y ' ,  y') 

~0 
(2.28) 
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must contain as its leading order nonoscillatory term 

(1  - 1 / e ' )  
- Frc2y 2 (2.29) 

Thus in the conducting phase the large-y expansion of (2.28) must contain 
as its leading order nonoscillatory term 

1 
- Frc~y 2 (2.30) 

In the insulating phase, when e '=  1, the leading order nonoscillatory term 
of (2.28) will by o(1/y2). 

From the exact expressions for p~ to be calculated below it is this sum 
rule which determines the phase of the system. 

3. THE EXACT RESULTS 

We will now proceed to evaluate the integrals Ia.u for the three values 
of the coupling constant F =  1, 2, and 4. We do this in order of difficulty: 
F =  2, 1, then 4. 

3.1. The Coupl ing Constant  F = 2  

Free Energy. The Boltzmann factor for the particle-particle 
interaction is just the product of two Vandermonde determinants. (81 Thus 

N! N[  N 

D2= ~ Z e(R)e(S) I~ e2~i~ s(ol/w (3.11 
R = I  S = I  l = 1  

where e(R) and e(S) denotes the signature of the permutations R and S. 
Inserting this identity in (2.10) with a = 0  we see that for nonzero con- 
tribution to the partition function we require 

R(I) - S(I) + Nnl = 0 for each l = 1, 2,..., N 

Since IR(I) - S(I)[ < N we must have 

(3.2) 

and 

nl=O 

S ( l ) = R ( l )  for each I =  1, 2,..., N (3.3) 
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Since [e(R)]2= 1 the resulting expression is independent of the particular 
permutation R. Thus we have the simple result 

Io, N = N ! ( W o o )  N (3.4) 

Inserting (3.4) in (2.7) gives 

flf = --log[co#(2rc) 2 ] (3.5) 

for all N. In particular this is the free energy per particle in the ther- 
modynamic limit N ~ oo. 

One-Part ic l e  Dis tr ibut ion  Funct ion .  From (2.8) we must 
calculate It,N. Using the identity (3.1) we see the conditions (3.3) must be 
satisfied for each l = 2, 3,..., N. Note that this implies R(1) = S(1 ). Thus 

I~,u = (N-- 1)!f(0x)(Wc0) u-I (3.6) 

so inserting (3.6) and (3.4) in (2.8) we have 

p(O, ) = #f(O~ )/Co (3.7) 

for all N. 

T w o - P a r t i c l e  Distr ibut ion  Funct ion .  We must now calculate 
I2,u. After using the representation (3.1) we see that for nonzero con- 
tribution we must have the conditions (3.3) for each /=3,4,. . . ,  N. If 
R(1)=r~,  R(2)=r2 ,  l<~rl, r2<~N, and r lCr 2 we can have S ( 1 ) = r l ,  
S(2)=r~ with e(R) e(S)=I, or S(1)=r2 ,  S ( 2 ) = r l  with e(R) e(S)=-1.  
Hence 

N N 

I2,N=(N_2)[ f(O~)f(Oj(WCo)N 2 ~ Z {1-exp[2zci(O~-Oj(r~-rJ/W]} 
r l - - 1  r 2 = 1  

r~ ~ r:  ( 3 . 8 )  

Inserting (3.8) and (3.4) in (2.9) we obtain p(O~, 02) for the finite system. In 
the limit N, 14/~ oo the sums in (3.8) become Riemann integrals. These 
integrals are easily evaluated to give in the thermodynamic limit 

f(01) f(02) sin 2 ~z#(O~ -- 02) 
p(O,, 02) = p(01) p(02) (c~ z rt2(0~ _ 02)~ (3.9) 

3.2. The Coupling Constant  r = l  

We must consider the integrals 

f f 
n l ~  - - ~  n 2 =  oo 

N 

f [I c~K(u) (3.10) 
nN= --o0 o~ ~1 
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where 

K(v) = dO, [1 + v(Oz)]e2=i"~/WD(01 ,..., ON) 

The integrals Ia, N are related to J by 

I0, N = J (O)  

1 8 
II'N = N 6v(0, ) J(v) v = o 

1 6 2 J ( v )  v 
I2,v N ( N -  1) 6v(01) 6v(02) 

Here 6/& denotes functional differentiation. 
Our starting point is the formula (s) 

= 0  

Forrester 

(3.11) 

(3.12) 

(3,13) 

(3.14) 

N[ N/2 
K(U) ~-- ( - - i )  N/2 (N/2)-~-~. ~x e(P)l~1 @e(2,-, ).p(zz)(v) (3.15) 

where 

e(2t 1).P(2t)(v) = IwdO2~I~dO2t-~ sgn(02l- 02l 1 )[ 1 + v(021_1 )] [ 1 + v(02t)] 
�9 ~0 ~0 

02,,[ N+, ] 
xexp { 2 r t i - - ~  P ( 2 1 - 1 ) - - - ~ - - - +  Nn2, 1 

o2, I N+, 1} + 2~ i -~  P(2/) - f - + N n 2 t  (3.16) 

and X denotes the sum of all permutations P of {1, 2 ..... N} such that 
P(2/) > P(2 l -1 ) .  To calculate the free energy we set v = 0. We can then 
reduce the double integral in (3.16) to a single integral 

~l P(2l-- 1 ) , P ( 2 / ) ( O )  

I 1 1 ] 
_ W P ( 2 1 ) - ( N + l ) / 2 + N n 2 1  P ( 2 1 - 1 ) - ( N + l ) / 2 + N n 2 1 _ 1  2~zi 

dO exp { 2trio [ P(2/) + P(2l - 1 ) - N - 1 + N(n 2, + n2t ~ ) ] /W} 

(3.17) 

Since IP(21)+ P ( 2 1 - 1 ) -  N - 1 1  < N, for nonzero contribution to the sum 
over X in (3.15) we require 

F/2l ~ - - F / 2 l - -  1 
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and 
P(2/)  + P(2l- 1) = N +  1 (3.18) 

for each l =  1, 2,..., N. Thus we must have 

P(2/)  = N + 1 - Q(I) 
e(2l-  1 ) =  Q(l), Q(l) ~ {1, 2 ..... N/2} (3.19) 

where each such permuta t ion  has even parity. Therefore 

W N N !  (u/2)! N/2 ~ (C2n)2 

[__! 2, (U+l)~----Q(l)+Un J(O) = 7rN/2(N/2) ! Q=I l . . . . .  
(3.20) 

This expression is independent  of the part icular  permuta t ion  Q so we can 
choose Q(l) = l and multiply by (N/2)! Inserting the resulting expression in 
(3.12) and (2.7) we obtain the free energy in the finite system. In the ther- 
modynamic  limit the sum over I tends to a Riemann integral, and we 
obtain 

1 l I [ (G)2 ] (3.21) 
f l f=-~ log4rc -S f  ~ d x l o g  ~ (1-x)/2+nJ 

17= c~ 

One-Particle D i s t r i b u t i o n .  F rom the definition of functional dif- 
ferentiation we have 

) K(v) =.(_i)N/2 ~N! /__~tWh_~a(p) /N/2[~ 1 

1 ] 
- P(2j  - 1 ) - (N + 1 )/2 + Nn2j _ 1 

N/2 
X l - I  I//P(2I--1),P(2[)(O) (3.22) 

/=1 
l ~ j  

For  nonzero  contr ibut ion to the sum over X we require the condit ions 
(3.19) for each l =  1, 2 ..... N/2, lr Therefore  if Q(j)=p 

; , C .  .cos2..Ol 

,. -+ ,..,'/(2" ' .+..I 
n= oo / 

(3.23) 
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Substituting (3.23) and (3.13), (3.12) in (2.8) we obtain for the one-particle 
density in the thermodynamic limit 

where 

uf(01) fl 
- ~  - -  d x  p(O~) 2 -1 

g(01, x) 

( cn)2/(n + x/2 ) 
n ~ - - o o  

(3.24) 

g(O, x ) =  ~ cne2~i~~ (3.25) 
n =  - - c o  

The  T w o - P a r t i c l e  D i s t r i b u t i o n .  The intermediate steps in this 
calculation are cumbersome to write down. Since they require no techni- 
ques other than those used above, we will present only the results. With the 
definition (3.25) of g we find 

0(01, 02)= p(01) p(02) f(Ol)f(02)l~2 Re dt ds 
4 - 1  - 1  

exp [~i#(01 - 02)(t - s)] [ g ( - 0 1 ,  t) g(02, t) + g ( - 0 1 ,  t) g( - 0 2 ,  s)]  
• 

E ] ~=~ (c,)2/(t/2+n) ~ (c,)2/(s/2+n) 

+ ~#f(Ox)f(O2)fo dt sin(lOl-O21~t~t) 

(cn)2/(t/2 + n) 

where Re denotes the real part. 

(3.26) 

3.3. The Coupling I ' = 4  

Free Energy. We use the identity (8) 

N 

0 4  = E g (P) ~ I  [ P(21) -- P(2l-- 1 ) ] exp { 2~i0, E P(2/) + P(2l - 1 ) - 2 N -  1 ] / W } 
X / = 1  

(3.27) 

where X denotes the sum over all permutations P of { 1, 2,..., 2N} such that 
P(2/) > P(21-  1 ). 

Inserting this expression in the definition (2.10) of Io,u we see that for 
nonzero contribution to the partition function we require 

P(2/) + P(2l - 1 ) - 2N--  1 + Nn~ = 0 (3.28) 
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for each l =  1, 2,..., N. There are three possibilities: 

P(2/) + P ( 2 l -  1 ) - 2 N -  1 = I 
- N ,  n , =  1 [type ( - ) ]  

O, n~ = 0 [-type (0)] 

N, nt = -1  [type ( + ) ]  

(3.29) 

We will use the symbolic notation ( - ), (0), and ( + ) as indicated in (3.29). 
For such choices of permutations we have 

N 

IO.N = W u ~, e(P) H %[P(21 ) -  P(2l--  1)] (3.30) 
X l = 1  

Our method is to consider the value of (3.30) firstly with type (0) for each 
l, then consider in turn the effect of one, two .... type ( - ), ( + ). To calculate 
the contribution to IO, N (Ao say) from all permutations of type (0), we note 
such permutations must be of the form 

P(2/) = 2 N +  1 - Q(l) 
(3.31) 

P(21-  1)= Q(l) 

for each l =  1, 2,,.., N where Q(l) is a permutation on {1, 2,..., N). Thus 
since all such permutations have even parity 

N~ N 

Ao= (Wco) u ~, lq [ 2 N +  1 - 2 Q ( / ) ]  
Q = l l = I  

N 

= (Wco) NN! l~ (2N+ 1 - 2 / )  (3.32) 
l = l  

We note that it is not possible to have a type ( - )  contribution to (3.30) 
without having a type ( + )  (and vice versa) since it would not permit the 
pairing (3.31) for the remaining type (0)'s. 

So next we consider the contribution to (3.30) (to be denoted AI) 
from permutations of the form one type ( - ) ,  one type (+) ,  and ( N -  2) 
type (0)'s. Firstly we note that there are N ! / ( N - 2 ) !  different choices 
amongst the integrations for this class of nonzero contribution. If we mul- 
tiply by this factor, we can suppose the type ( - )  occurs for l-- 1 and the 
type ( + )  for 1 = 2. Thus for l = 1 we can have 

P ( 1 ) = r  
(3.33) 

P ( 2 ) = N +  1 - r  
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where r~{1 ,2  ..... N/2}  (it is thus convenient to choose N even). This 
immediately implies that 

P ( 3 ) = N + r  
(3.34) 

P ( 4 ) = 2 N +  l - r  

For l=3, 4 ..... Nwe must have (3.31) where Q e {1, 2,..., N } -  {r, N+ l - r } .  
All such permutations have even parity so we have 

where 

t 2 N N/2 
A ~ = ( W c o ) N N  ! c~ [ I  ( 2 N + 1 - 2 l )  ~ a(r) (3.35) 

\ C 0 /  /~ 1 r = 1 

(N + 1 - 2r) 2 
a(r) - (3.36) 

(2N+ 1 - 2r ) (2r -  1) 

Proceeding similarly, if we denote by A, the value of (3.30) from all 
permutations of the form n type ( - ) ,  n type (+) ,  and N - 2 n  type (0) 
( N -  2n >~ 0) we find 

(T A n = ( W c o ) N N  [ __c' I ]  ( 2 N + 1 - 2 l )  2 a(rz) (3.37) 
\COl  l ~ l  l~r l<r2 . - .~N/2  ] = ]  

Hence, since A~ is just the coefficient in the power series expansion of a 
product we have the formula 

N/2 

Zo, = E An 
n = 0  

=(Wco) ~1__1=  + 2Co/ aft)] (3.38) 

Substituting (3.38) in (2.7) we obtain the expression for flf in the finite 
system. The thermodynamic limit can be computed using Stirling's formula, 
and noting that the series obtained after taking the logarithm of the 
product in (3.38) converges to a Riemann integral. This integral can be 
evaluated to give 

f l f  = - log[c0/~3(27Qs/Tc] + l 

-~{[1-\T~/ j log~ 
1 1/2 

+2\T-27_~ J log[(1 + x / 1 - 3 ) / 2 ] }  

(3,39) 
where 

= (cl/Co) 2 (3,40) 
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One-Part ic le  Distribution.  For the choices of the permutation P 
given by (3.29) we have 

I~,N=W N lf(O~)~e(P) c~j exp{21riOl[P(2)+P(1 ) 2 N - 1 ] / W }  

N 
x I ]  [P(2/) - P(2 l -  1)] (3.41) 

[ = 1  

To evaluate I1,N we consider in turn the three cases when 
P ( 2 ) + P ( 1 ) - 2 N - 1  is of type (0), ( - ) ,  and (+ ) .  If we denote the sum 
contribution of each case by B0, B_ ,  and B+,  respectively, then 
proceeding as above we find 

N 

B0= ( W c o ) N - I ( N  - 1)! I-[ ( 2 N +  1 - 2 / )  
l ~ l  

x N +  ~ ( N - 2 k )  c~ Z a(rk) (3.42) 
k = l  \ C O , ]  l ~ < r l <  "" <rk<~N/2 j=l 

B _ + B + = ( W c o ) N - ~ ( N - I ) !  ( 2 N + ! - 2 l )  2 c~ cos2~z0l/W 
l 

N/2 k 
x Z k E [I a(rk) (3.43) 

k = l  l ~ < r l <  "'" <rk<~N/2 j--1 

The term on the second line in (3.42) is just the derivative with respect 
to x of the product 

N/2 I 2 1 I] x2 + ( ~  a(l) (3.44) 
~=1 \Co/ 

evaluated at x = 1. The term on the second line of (3.43) is the derivative 
with respect to x of the product 

evaluated at x = 1. Hence 

~2I I+x(c -L )2a( l ) ]  
t= 1 \Col 

I I ' x -  Wc o = 1 + (CjCo) 2 a(k) 

( ~ N/2 a(k) J 
+ c l  cos 2 ~ 0 i  Y, 1 + (CdCo) 2 a(k) 

\Col k : t 

(3.45) 

(3.46) 

822/42/5-6-11 
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Substituting (3.46) in (2.8) and taking the thermodynamic limit we 
have 

p(Ol)]~f(O1)~f~dt l (Cl) f~ c ~ ( t ) ]  ( 3 . 4 7 )  
- c o 1 +~c~(t) + ~oo cos2~/~01 dt ~ 5  

where 
( l - t )  2 

e(t) = - -  (3.48) 
t(2 - t) 

and ~ is defined by (3.40). These integrals can be evaluated to give 

p(O1)~_],~f(O1)I1_~(Cl~(cos27.C#Ol__(Cl))( 1 
c----~ kCo/k ~o - 5 (1 - ~)-3/2 log 

+ [ 1 - ( 1 - ~ ) - ' / 2 ]  + ( 1 _ ~ )  3/21og ( l + , / 1 - ~ ) / 2 - 1 _ ~ x / 1  

(3.49) 

T w o - P a r t i c l e  D is t r ibu t ion .  

N N 

I2.m = wN 2f(Ollf(O2)~e(P) [I c,, I-[ [ P (2 l ) -P (2 l -1 ) ]  
X / = 3  l = 1  

x exp { 2~i0, [P(2) + P( 1 ) - 2 N -  1 ] /W 

+ 2MO2[P(4) + P(3) - 2 N -  1 ]/W} 

The problem here is to evaluate 

(3.5o) 

where the permutations P(5), P(6) ..... P(2N) are given by (3.29). The 
remaining permutations can be categorized as belonging to one of six 
classes: (0, 0), (0, + ), (0, - ), ( + ,  + ), ( +,  - ), ( - ,  - ). Thus, for example, 
if P(1),..., P(4) belong to the class ( 0 , - )  then subject to the constraints 
P(2)>P(1) ,  P ( 4 ) > P ( 3 )  we can have P(1) ..... P ( 4 ) ~ { 2 N + I - p ,  p, 
N +  l - r ,  r}, where 1 <<.p<~N and 1 <~r<~N/2. 

We now proceed as in the calculation for the free energy. The details 
are long but straightforward. We find 

pr(01, 02 ) _ ~2 f~ f~ 
(1/Co)2 f(O~) f(O2) 4 Re dt ds 

exp [2~zi/~(01-02)(t-s)](2- t -  s)2-exp[2zi#(01-02)( t + s - 2  ) ]( t -  s) 2 X 
(1 - t)(1 - s ) [  1 + r [1 + ~a(2s)] 

- ~00 -~-Re dt dS(l_t)( l_s)[l+~c~(t)][l+~c~(2s)  ] 
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( 
x ~(exp(2=i#0~) exp[2rU#(0~ - 02)(t/2 -s)] 

t .  

+exp(2~iktO2)exp[-2~rit~(O~-O2)(t/2 - s)]) 1 - - s  2---~-s 

+ {exp(2~zi#01) exp [27zi/z(01 - 02)( 1 - t/2 - s)] 

+exp(2rci#O2)exp[-2zti#(Ol-O2)(1-t/2-s)]}(s-2)(l+2-s)} 

+ \ 7 o ]  -~-Re dt dS (l_t)(l_s)[l+{~(t)][l+~c~(s) ] 

{t + s){ 2 t+ s)exp[~zi/~(0,-02)(t--s)] 
+ \ - ] - - ) \  - - 7 - )  

- ( 1 - t  T---~S)2expf2~zi#(O~ +Oj] exp[Tri#(O, -O2)(t-s)] 

l 
+ g  (t - s) 2 {exp(47ri/10a) exp [~zi(01 - 02)(r + s)] 

+ exp(4~zi/~01) exp[ --Tci(O 1 -- 02)(r --}- s)}} (3.51) 

3.4. A Mathematical Conjecture 

Before we go on to discuss these mathematical results from the 
physical viewpoint, let us first consider the possibility of generalizing them. 
The simplest case to consider is that for which the only nonzero Fourier 
coefficients of the Boltzmann factor of the periodic background are Co and 
C1' 

Let us denote the value of the integral I0,n in this case by JN(F). Then 
from (3.20), (3.4), and (3.38) 

N/2 I I(Cl) 2 (N+ 1--21) 2 ] 
Jev(1) = ( WCo)NK1,N ~H 1 -- ~ \ ~ )  (3N/2 -- 1 + 1/2)(N/2 + l -  1/2) 

Ju(2) = ( WCo)NKz, N 

JN(4)=(Wco)NK4N. /=I-1~ 1 + \%/ ( 2 N ~ l - -  ~-)(--~--- 1) 

(3.52) 

(3.53) 

(3.54) 
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where 

(FN/2)! 
Kr, N-- [(p/2)!] N (3.55) 

On the basis of these results we conjecture that for N even and F a positive 
integer 

Ju(r)  = (WCo)NKr.N I] 1 + . c l .  a(F, N, I) (3.56) 
l=1 \co/ 

Note that when cl = 0 the integral JN(F) is just the partition function for 
the one-component log-gas, and the value given by (3.55) is known to be 
correct. (8~ Furthermore from the definition of JN(F) w e  see that for F and 
N even it is a polynomial in (cl/co) 2 of order N/2. 

Our hope is that it will be possible to evaluate a(F, N, l) for all 
positive integers F, and thus by Carlson's theorem (s~ for all F. 

4. THE PHASE OF THE EXACT I S O T H E R M S  

The phase of the system (conducting or insulating) can be determined 
from the sum rules of Section 2.3. But before we do this, as a test of the 
accuracy of our results, we will check the perfect screening sum rule./9) This 
sum rule is necessary for Coulomb systems to be stable. It says 

f\ 
or equivalently using (2.26) 

dy CS(y, y ' ) = O  (4.1) 

f 
o o  

- p ( y ' )  = dy pT(y, y,) (4.2) 
oO  

Using the exact results (3.7), (3.9), (3.24), (3.26), (3.47), and (3.51) we can 
check that (4.2) holds in each case. 

4.1. Large-y Expansions of the Truncated T w o - B o d y  
Distr ibut ions 

The sum rules of Section 2.3 require the large-y expansions of the 
quantity 

S(y) = I~ 11/~ dy' py(y+ y,, y,) (4.3) 
Jo 
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From the exact expressions (3.26), (3.9), and (3.51) of the correlations we 
deduce the following. 

F = I "  

X 

1 1 
S(y)~ 

L [,, { ] n + 1/2j 
2 

hi= --oo n2= --co n3= --~o 
n 1 r  

Cn2 + nl Cn3 + nl Cn2 Cn3 COS 27z#yn 1 

(1/2 + n 3 + nl)(1/2 + n2) 

(4.4) 

F = 2 :  

S(y) 

F = 4 :  

[ 1  - ( c f f c o )  2]  1 

2(Try) 2 (Co~zy) 2 

X ~ [(Cm) 2 1 1 
rn=l - - 5 ( C m - - 1 ) 2 - - - 2  (Cm+ l)21 COS 27zpym (4.5) 

1 oo  

E ( cm + 1 --  Cm-- 1 )2 COS 2rc#ym 
S ( y )  2(C11,cy)2m= 1 

1 ~ . bo 
+--5 ~ a, sm2rc(n+l/2)#y+ , c1r  y4 

Y n=0 

1 
S(y)~.4.c---,2 ~ [ (c ,+1)2+(c ,  i) 2] cos2rcn#y 

t o) Y,,=I 

1 1 
( C n )  2 COS 2~zn#y 

4(Tzy) 2 2(r~c0y)2 ,= 1 

1 oo 
y )-%,2 .~1"2 [(c,~ -1 )2 _ (c, +~ )2] sin 2~zn#y, 

8g( 

(4.6) 

ci = 0 (4.7) 

In (4.6) b0 and the an are functions of the c~, and we have not written 
down the oscillatory terms of order 1/y 4. 

Thus from the sum rules of Section 2.3 we see that at F =  1 the system 
is in a conducting phase for all periodic backgrounds of period 1/#. At 
F = 2 ,  if c I r  the coefficient of the 1/y 2 term in (4.5) does not fit in our 
classification of phases, so it is neither conducting nor dielectric. But if 
cl -r 0 at F =  4, there is no nonoscillatory term of order 1/y 2, SO from Sec- 
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tion 2.3 the system is in a dielectric phase. If c I = 0 at F =  2 or F =  4, again 
the system is in a conducting phase. 

The relevant parameters with regard to phase transitions in this 
system are thus F and ca. For a given periodic background with c~ ~a 0, 
varying F from F =  1 to F = 4  changes the phase from conducting to 
insulating. But since we have the exact solution for three discrete values of 
F only, we have no knowledge of the nature of the phase transition. 

In the nonconducting phases F =  2 and F =  4 varying c~ from positive 
to negative values (or vice versa) induces a transition to a conducting 
phase at c~ = 0. From the exact expressions for the free energy (3.5), one- 
particle correlation (3.7), and two-particle correlation (3.9) this transition 
is not accompanied by any singularities at F =  2. But in the vicinity of 
cl = 0 at F =  4, from (3.39), the singular part of f i f  behaves as 

~fsing ~ 1(el/CO) 2 l o g  Icl  I (4.8) 

while from (3.49) the singular part of p(O) behaves as 

psiog(0) ~ - #f(O_.__)) (cos 2~z~0)cl log Icl[ (4.9) 
(Co) 2 

4.2. In terpretat ions of the Phases of the Exact Isotherms 

We seek a better understanding of the F, c~ behavior observed on the 
exact isotherms. 

As an approximation let us consider the system as consisting of two 
independent effects: the particles interacting amongst themselves and the 
particles interacting with the background. Then the truncated two-body 
distribution can be written 

pr(O, 0') = Af(O) f(O')  p*r(o -- 0') (4.10) 

where A is a normalization constam and p* r ( 0 -  0') denotes the truncated 
two-body distribution of the system in a uniform background (i.e., all the 
cn except co equal to zero). 

We have an asymptotic formula due to Haldane, (m'11) which says 

1 ~ cos 27rn#y 
p , T ( y ) ~  _ (~rylZr+,~1= a,, y4n~/r (4.11) 

where the an's are dependent of F. Note from the coefficient of the 1/y 2 
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term that this homogeneous system is a conductor for all F. From 
Haldane's formula the leading order behavior is 

- -  1 a I cos 27z#y 
p*r(y)~(z~y)2 F, F < 2 ;  y4/1- , f ' > 2  (4.12) 

Substituting (4.12) in (4.10) we thus have the leading order nonoscillatory 
behavior of S(y):  

A ( c o )  2 Aal(cl) 2 
S(y) (~zy)2F, F < 2 ;  y4/~, F > 2  (4.13) 

Hence if F < 2 ,  by a proper choice of the normalization constant 
[A- -1 / (%)  2] we have the correct 1/y 2 behavior for a conducting phase. 
However, if F >  2 and c I r 0 this approximation gives a leading order non- 
oscillatory behavior slower than 1/y 2. Since we expect the state to be either 
conducting or insulating, from the sum rules of Section 2.3 such behavior is 
not possible. We interpret this as indicating that the system has undergone 
a phase transition at F =  2. 

Within the framework of the approximation (4.10), the mechanism for 
the phase transition is constructive interference between the dominant 
oscillatory term of the correlation p . r  for F > 2 ,  and the corresponding 

F 

8 

Fig. l. 

2 

- i  i CI  

Conjectured phase diagram in the c 1 F plane. The shaded region is conducting. Note 
that the region of the F axis 2 < F< 8 is conducting. 
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oscillatory term in f ( 0 1 )  , which is cl cos 2~#y. If cl = 0  then there is no 
constructive interference with the leading order term in p . r .  Hence, if for a 
given temperature F~>2 the next oscillatory term a2 cos 4~y/y 16/r falls off 
faster than the nonoscillatory term - 1 / F ( O y )  2 (i.e., F <  8) and c~ = 0, then 
the system will be in a conducting state. This is precisely what we observe 
at F = 2 and 4 in the exact solution. 

On the basis of this approximation we thus predict the phase diagram 
in the c I F plane as given by Fig. 1. Note that for the region F > 8 ,  c~ = 0  
to be insulating we require c2 # 0. 

We noted in Section 4.1 that from the static viewpoint the isotherm 
F =  2, c 1 # 0 is neither conducting nor insulating. This isotherm, which we 
believe to be the phase boundary, is such that for the uniform background 
system, the Oscillatory term and the 1/y 2 nonoscillatory term are of the 
same order. Thus within the framework of the approximation (4.10) 
[which from (3.39) is exact at F =  2, !] there is a balance between the con- 
structive interference (insulating behavior) and 1/y 2 conducting behavior. 

4.3. Fixed Positive Charges as Background 

We have seen that the phase diagram of the model is dependent only 
on the first Fourier coefficient of the Boltzmann factor of the par- 
ticle-background interaction. However, the details of the periodic 
background do have some distinguishing features. 

Consider the case in which the periodic background is due to fixed 
positive charges of strength q. To prevent the mobile negative charges from 
collapsing onto the positive charges let there be an impenetrable barrier of 
total length e, centered on each positive charge (a < 1/#). The Fourier coef- 
ficients of the Boltzmann factor are then 

1 -,ur COS 2=nx dx 
Cn = JILa/2 sin r xrc  

(4.14) 

Note that for all F > 0 ,  by varying #e, cn can taken both positive and 
negative values. Thus for 2 < F <  8 the system undergoes an insulating- 
conducting phase transition at c 1 = 0. 

Our concern with this explicit case will be the studying of the free 
energy in the limit # ~ 0. In this limit we would expect to be able to dis- 
tinguish the conducting and insulating phases. The insulating phase con- 
sists of fixed dipoles--each mobile negative charge will pair up with a fixed 
positive charge. In the limit #-~ 0 the free energy will be only due to the 
internal energy, and will be finite. In the conducting phase the mobile 
negative charges are not bound to the positive charges. Thus in the limit 
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#--,0 both the internal energy and entropy will diverge, so we would 
expect the free energy to diverge. Let us test these expectations on our 
exact results. 

To obtain the/~ ~ 0 limit of the expression (3.21) for the free energy at 
F =  1, we use the readily verifiable identities 

S 1 ~.~ ~ Cne2Xi#nt 

n = --oo 

~2zcie 27ziIH~ ~]/, u 

+ 27zie 2~i.t~ f] 

$2=- n + c~ 

=# dt f(t)S~ 
~0 

dxf(x)e2~i~ ~ 

dx f ( x ) e  2~ix~] (4.15) 

(4.16) 

flf--*-log(648-3/3)+1 as # ~ 0  (4.20) 

Thus, as expected, the free energy diverges in the limit #--, 0 for the 
conducting regime F =  1, but is finite in the nonconducting regimes F =  2 
and 4. 

and at F =  4 

f l f - ,  -log(Be -1) as # ~ 0  (4.19) 

Using integration by parts we can then show 

4 
$2 ~ - c o t  nc~(log #~)2 (4.17) 

7T 

and thus from (3.21), at F =  1 

f l f~  - log(log #e) (4.18) 

Integration by parts of (4.14) gives immediately the small-# behavior 
of the c~ for F >  1. We then have from (3.5) that at F =  2 
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5. C O N C L U S I O N  

The one-component Coulomb system of charged rods confined to one- 
dimension in a periodic background (period 1//~) exhibits conducting- 
insulating phase transitions. These transitions occur irrespective of the 
source of the periodicity of the background. They are dependent only on 
the temperature and the first Fourier coefficient of the Boltzmann factor of 
the periodic potential, A mechanism for this transition is given in terms of 
an approximation whereby the system consists of two independent effects: 
the particle-particle and particle-background correlations, Within the 
framework of this approximation the phase transition occurs when 
oscillatory terms dominate the particle-particle correlation, and interfere 
constructively with the oscillatory term of the same period in the 
Boltzmann factor for the particle-background interaction. This gives a 
heuristic argument predicting the phase diagram of this system. 

It remains as an outstanding problem to do the same for 
corresponding two-dimensional systems. If we consider the one-component 
charged rods system in a two-dimensional domain, what class of periodic 
potentials will produce a conducting-dielectric phase transition? What is 
the underlying mechanism of this transition (especially if the periodic 
potential is of non-Coulombic origin)? In the low density limit, is the 
conductingmlielectric transition temperature always F =  4? 

AC K N O W L E D G  M ENTS 

I thank B. Jancovici for his hospitality at Orsay where most of this 
work was done, and A. Alastuey for his hospitality and interest in this 
work. Also I thank Ph. Choquard for his hospitality at Lausanne and dis- 
cussions which led to the formulation of this model. 

REFERENCES 

[. P. W, Anderson, G. Yuval, and D. R. Hamman, Phys. Rev. B 1:4464 (1970), 
2. P, W. Anderson and G. Yuval, J. Phys. C 4:607 (1971). 
3. J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6:1181 (1973). 
4, J. M. Kosterlitz, J. Phys. C 7:1046 (1974). 
5. J. M. Caillol and D. Levesque, Orsay preprint (1985). 
6. B. Jancovici, J. Stat. Phys. 29:263 (I982). 
7. P. J. Forrester, B. Jancovici, and E. R Smith, J. Stat. Phys. 31:129 (1983). 
8. M, L. Mehta, Random Matrices (Academic, New York, 1967). 
9. Ch. Gruber, J. L. Lebowitz, and Ph. Martin, J. Chem. Phys. 75:944 (1981). 

10. F, D. M, Haldane, Phys. Rev. Lett. 47:1840 (1981). 
11~ P. J. Forrester, J. Phys. A 17:2059 (1984). 


